phorsäure-phenylestern (Engelhardt \& Jürgens, 1980). Schwache intermolekulare Wasserstoffbrücken verbinden die Moleküle untereinander: $\mathrm{S} \cdots \mathrm{H}(41)^{1} 2,76$ (3) mit $\mathrm{S} \cdots \mathrm{N}(4)^{\mathrm{i}} 3,598(5) \AA ; \mathrm{S} \cdots \mathrm{H}(21)^{\mathrm{if}} 2,68(6) \mathrm{mit}$ $\mathrm{S} \cdots \mathrm{N}(2)^{\mathrm{ii}} 3,469(6) \AA\left[(\mathrm{i})-x,-y, 1-z\right.$; (ii) $x, \frac{1}{2}-y$, $\left.\frac{1}{2}+z\right]$.

Wir danken den Herren Kollegen des Instituts für Kristallographie der Freien Universität Berlin für ihre Unterstützung bei den Messungen und für die Überlassung einiger Rechenprogramme. Dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung.

## Literatur

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Clegg, W. (1980). Acta Cryst. B36, 2830-2832.
Clegg, W., Noltemeyer, M., Sheldrick, G. M. \& Vater, N. (1980). Acta Cryst. B36, 2461-2463.

Clegg, W., Sheldrick, G. M. \& Vater, N. (1980). Acta Cryst. B36, 3162-3164.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Engelhardt, U. (1979). Acta Cryst. B35, 3116-3119.
Engelhardt, U. \& Bünger, T. (1978). Inorg. Nucl. Chem. Lett. 14, 21-22.
Engelhardt, U. \& Bünger, T. (1979). Z. Naturforsch. Teil B, 34, 1107-1111.

Engelhardt, U., Friedrich, B. \& Stromburg, B. (1982). Acta Cryst. B38, 753-758.
Engelhardt, U. \& Jürgens, G. D. (1980). Acta Cryst. B36, 3059-3063.
Engelhardt, U. \& Metter. H.-P. (1980). Acta Cryst. B36, 2086-2091.
Engelhardt, U., Metter, H.-P. \& Steger, L. (1977). Z. Anorg. Allg. Chem. 434, 263-270.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Glidewell, C. (1979). Inorg. Chim. Acta, 36, 135-138.
Glidewell, C. \& Holden, H. D. (1981). Acta Cryst. B37, 754-756.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hursthouse, H. M. A. \& Malik, K. M. A. (1979). Acta Cryst. B35, 522-524.
International Tables for X-ray Crystallography (1962). Bd. III. S. 213. Birmingham: Kynoch Press.

Larson, A. C. (1967). Acta Cryst. 23, 664-669.
Pauling, L. (1973). Die Natur der Chemischen Bindung, 3. Aufl. Weinheim: Verlag Chemie.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. K., Неск, H. \& Flack, H. (1976). The XRAY system version of March 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wannagat, U., Giesen, K. P. \& Falius, H. H. (1973). Monatsh. Chem. 104, 1444-1447.
Wannagat, U., Giesen, K. P. \& Rabet, F. (1971). Z. Anorg. Allg. Chem. 382, 195-197.

# X-ray Structural Study of $\mathbf{3}^{\prime}, \mathbf{6}^{\prime}$ - $\mathbf{O}$-( $\mathbf{1 , 1 , 3 , 3 - T e t r a i s o p r o p y l - 1 , 3 - d i s i l o x a n e d i y l ) - ~}$ neplanocin A, a Derivative of a Novel Antitumor Antibiotic 

By Masatoshi Yamazaki, Kensaku Hamada, Yuriko Yamagata, Takaji Fujiwara and Ken-ichi Tomita<br>Faculty of Pharmaceutical Sciences, Osaka University, 133-1 Yamadaoka, Suita, Osaka 565, Japan<br>Kiyoshi Fukukawa and Tohru Ueda<br>Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi-6, Kita-ku, Sapporo 060, Japan

and Takao Hirano
Research Laboratories, Toyo Jozo Co., Ltd, Ohito, Shizuoka 410-23, Japan
(Received 29 July 1981; accepted 1 October 1981)


#### Abstract

The structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}$, $M_{r}=505.54$, was determined by X-ray analysis using 5046 independent diffractometer data and refined to a final $R$ of 0.055 including all H atoms. The crystal


0567-7408/82/041176-05\$01.00
belongs to the monoclinic space group $P 2_{1}$, with $a=$ 8.953 (1), $b=34.638$ (4), $c=8.957$ (1) $\AA, \beta=$ $94.41(1)^{\circ}, \quad V=2769.5(7) \AA^{3}, Z=4$, and two independent molecules in the asymmetric unit; $D_{x}=$ $1.213, D_{m}=1.215 \mathrm{Mg} \mathrm{m}^{-3}$. The conformations of the two molecules are quite similar, and no significant (C) 1982 International Union of Crystallography
differences are found in bond distances and angles. Both the sugar $\mathrm{C}\left(2^{\prime}\right)$ atoms are displaced by $0.3 \AA$ toward the base $\mathrm{N}(9)$, i.e. $\mathrm{C}\left(2^{\prime}\right)$-endo puckering, and the torsion angles $\chi_{\mathrm{CN}}$ are $34.4(7)^{\circ}$ and $33.0(7)^{\circ}$ for (I) and (II), respectively (anti conformation).

## Introduction

Neplanocin A (Fig. 1) is a newly isolated antitumor antibiotic from Ampullarilla regularis A 11079, and its chemical structure has been recently determined as (-)-9-[trans-2,trans-3-dihydroxy-4-(hydroxymethyl)-4cyclopentenylladenine (Hayashi, Yaginuma, Muto \& Tsujino, 1980). Some of the most interesting structural features are that it contains adenine, a common nucleic acid base, and an unsaturated cyclopentene ring instead of the furanose found in adenosine and other common nucleosides, and that it exhibits marked antitumor activity. The modification of neplanocin A at the $2^{\prime}$ position is expected to provide many active analogs, but a systematic approach to the synthesis of such compounds requires the protection of both the $3^{\prime}$ and $6^{\prime}$ hydroxyl groups of neplanocin A. As 1,3 -dichloro-1,1,3,3-tetraisopropyldisiloxane is used for the simultaneous protection of the $3^{\prime}$ - and $5^{\prime}$-hydroxyl groups of adenosine and other ribonucleosides (Markiewicz, 1979), we have applied the same procedure to neplanocin A to see whether the protection occurs at the $3^{\prime}$ and $6^{\prime}$ positions or at the $2^{\prime}$ and $3^{\prime}$ positions. This paper describes the X-ray structural study of the product, $3^{\prime}, 6{ }^{\prime}$ - $O$-( $1,1,3,3$-tetraisopropyl-1,3-disiloxanediyl)neplanocin A (Fukukawa, Ueda \& Hirano, 1981), hereafter referred to as siloxane neplanocin A (Fig. 1).

## Experimental

Transparent prismatic crystals of siloxane neplanocin A were obtained at room temperature from their ethanol solution. A crystal with dimensions $0.10 \times$ $0.11 \times 0.15 \mathrm{~mm}$ was mounted on a Rigaku four-circle diffractometer; $\mathrm{Cu} K \alpha$ radiation and a graphite


Fig. 1. Chemical structure and atomic numbering used in this work.
monochromator were used. The unit-cell dimensions were determined by least-squares analysis of the angular positions of 25 relatively strong reflections. The systematic absence of $0 k 0$ reflections with $k$ odd suggested that the space group was either $P 2_{1}$ or $P 2_{1} / m$, and the former was adopted since the molecule is optically active. The density, measured by flotation using a benzene-carbon tetrachloride mixture, revealed that the crystal contained two independent molecules in the asymmetric unit. X-ray intensities were measured with the $\omega-2 \theta$ continuous scanning mode, with a scan speed $2^{\circ} \mathrm{min}^{-1}$ and scan width calculated as $(0.70+$ $0 \cdot 15 \tan \theta)^{\circ}$. Stationary background counts of 10 s were taken at both limits of each scan. Three standard reflections measured after every 50 reflections showed a $3 \%$ gradual decrease in intensity during the course of the data collection. The intensities were collected for a total of 5040 unique reflections measured up to the limit $2 \theta=135^{\circ}$. Lorentz-polarization corrections were applied, but neither an absorption nor an extinction correction was made.

## Structure analysis

The structure was solved by the direct method using the program MULTAN 78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). All 68 expected non-hydrogen atoms were automatically located from the phase set with the highest combined figure of merit using 500 normalized structure factors ( $E \geq 1.58$ ). The structure was refined by the block-diagonal leastsquares method with anisotropic thermal parameters for all nonhydrogen atoms to an $R$ of 0.078 . A difference Fourier synthesis revealed the positions of all the H atoms except those of the methyl groups which were found by successive difference Fourier syntheses. The final refinement including all the H atoms with isotropic temperature factors converged to $R=0.055$ for 4671 non-zero reflections. The weighting function used had the form $1 /\left(\sigma^{2}\left|F_{o}\right|+0.29765\left|F_{o}\right|-\right.$ $0 \cdot 00019\left|F_{o}\right|^{2}$ ). The atomic scattering factors were taken from International Tables for $X$-ray Crystallography (1974). The final positional and thermal parameters are given in Table 1.* All the numerical computations were performed on an ACOS 700 computer of the Crystallographic Research Center, Institute for Protein Research, Osaka University, using the program UNICS (1979).

[^0]Table 1. Final positional parameters and equivalent isotropic thermal parameters ( $\AA^{2}$ ) with their estimated standard deviations
$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} B_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.


Fig. 3. Bond angles $\left({ }^{\circ}\right)$, where the upper and lower values are for molecules (I) and (II), respectively. The average standard deviation is $0.5^{\circ}$.



Fig. 4. Stereoscopic view of the molecular conformation of molecule (1).

Table 2. Least-squares planes of the adenine ring in molecules (I) and (II)

Atom displacements ( $\AA$ )

|  | $(\mathrm{I})$ | $(\mathrm{II})$ |  |  | (I) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| $(\mathrm{II})$ |  |  |  |  |  |
| ${ }^{*} \mathrm{~N}(1)$ | $-0.019(6)$ | $-0.021(6)$ | ${ }^{*} \mathrm{~N}(7)$ | $0.009(6)$ | $0.025(6)$ |
| ${ }^{*} \mathrm{C}(2)$ | $0.006(7)$ | $0.008(7)$ | ${ }^{*} \mathrm{C}(8)$ | $-0.004(7)$ | $-0.020(7)$ |
| ${ }^{*} \mathrm{~N}(3)$ | $0.010(6)$ | $0.016(6)$ | ${ }^{*} \mathrm{~N}(9)$ | $-0.022(5)$ | $-0.018(5)$ |
| ${ }^{*} \mathrm{C}(4)$ | $0.010(5)$ | $0.003(5)$ | $\mathrm{N}(6)$ | $-0.025(7)$ | $-0.030(7)$ |
| ${ }^{*} \mathrm{C}(5)$ | $0.016(6)$ | $0.023(6)$ | $\mathrm{C}\left(1^{\prime}\right)$ | $-0.022(7)$ | $-0.013(7)$ |
| ${ }^{*} \mathrm{C}(6)$ | $-0.006(6)$ | $-0.015(6)$ |  |  |  |

Molecule (I):
$-0.47426 X+0.76325 Y-0.43877 Z+23.65933=0$
Molecule (II):

$$
0.40014 X+0.76358 Y+0.50679 Z-1.292810=0
$$

* Atoms used to calculate the best planes.
1.330 and $1.311 \AA$ for molecules (I) and (II), respectively. The puckering of the cyclopentene ring was evaluated from the calculation of the best plane through $\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(4^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)$, as shown in Table 3.
The C( $3^{\prime}$ ) atoms of molecules (I) and (II) are on the best planes, whereas the $\mathrm{C}\left(2^{\prime}\right)$ atoms are displaced by 0.31 and $0.30 \AA$ toward $\mathrm{N}(9)$. Although there is no

Table 3. Least-squares planes of the cyclopentene ring in molecules (I) and (II)

Atom displacements ( $\AA$ )

|  | (I) | (II) |  | (I) | (II) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * $\mathrm{C}\left(1{ }^{\prime}\right)$ | $0 \cdot 000$ (8) | 0.000 (7) | N(9) | -1.011(9) | -0.996 (9) |
| C(2') | -0.31 (2) | -0.30 (2) | O(2') | 0.33 (2) | 0.34 (2) |
| C(3') | $0 \cdot 00$ (2) | 0.01 (2) | O(3') | 1.29 (2) | 1.30 (2) |
| * $\mathrm{C}\left(4^{\prime}\right)$ | 0.000 (7) | 0.000 (7) | C(6') | $0 \cdot 10$ (1) | $0 \cdot 08$ (1) |
| * $\mathrm{C}\left(5^{\prime}\right)$ | $0 \cdot 000$ (8) | $0 \cdot 000$ (8) |  |  |  |
| Molecule (I):$0.49307 X-0.60705 Y-0.62320 Z-7.69138=0$ |  |  |  |  |  |
| Molecu | le (II): $-0.66379 X$ $*$ | $+0.60756 Y$ | 0.4361 | $Z+6.3158$ | $=0$ |

classification for the puckering of cyclopentene rings as exists for the furanose ring in nucleosides or nucleotides, we may apply the same approach to siloxane neplanocin A. Then, the puckering of the cyclopentene ring is $\mathrm{C}\left(2^{\prime}\right)$-endo. Neplanocin A, without the siloxane ring between $\mathrm{O}\left(6^{\prime}\right)$ and $\mathrm{O}\left(3^{\prime}\right)$, is shown in Fig. 1. In comparison with the $\mathrm{C}\left(2^{\prime}\right)$-exo- $\mathrm{C}\left(3^{\prime}\right)$-endo puckering of neplanocin A (Nakatsu, 1980), the $\mathbf{C}\left(2^{\prime}\right)$-endo puckering of siloxane neplanocin A may be attributed to the planarity of the siloxane ring which may cause the $2^{\prime}$ position of the latter to be situated at the more open side or in a more suitable position to be attacked by reagent than that of neplanocin A. Although the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ lengths of 1.505 and $1.499 \AA$ for molecules (I) and (Il) are comparable to those for $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$, the hydroxymethyl $\mathrm{C}\left(6^{\prime}\right)$ is displaced by 0.10 and $0.08 \AA$ from the cyclopentene plane in the opposite direction to $\mathrm{C}\left(2^{\prime}\right)$, which may be due to the distortion caused by the siloxane-ring formation. The torsion angle $\chi_{\mathrm{CN}}, \mathrm{C}(8)-\mathrm{N}(9)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$, is 34.4 and $33.0^{\circ}$ for molecules (I) and (II), and therefore siloxane neplanocin A has the anti conformation as does neplanocin $\mathrm{A}\left(\right.$ Nakatsu, 1980) $\left(\chi_{\mathrm{CN}}=61.3^{\circ}\right)$. The dihedral angle between the cyclopentene and adenine best planes is $64.9(5)$ and $65.2(5)^{\circ}$ for molecules (I) and (II) respectively.

## Siloxane moiety

The $\mathrm{Si}-\mathrm{O}$ distances of this compound seem the same as those of related compounds having the cyclic siloxane skeleton (Peyronel, 1954; Steinfink, Post \& Fankuchen, 1955; Bokii, Zakharova \& Struchkov, 1972; Hossain, Hursthouse \& Malik, 1979), whereas the $\mathrm{Si}-\mathrm{C}$ distances vary depending on the neighboring groups, for example methyl ( $1.90-1.95 \AA$ ), isopropyl $(1.85-1.89 \AA)$ and phenyl ( $1.84-1.86 \AA$ ). The $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ angles (115.4-117.3${ }^{\circ}$ ) of siloxane neplanocin A having isopropyl as the neighboring group deviate significantly from the normal tetrahedral angle, compared with those having the methyl $\left(102-110^{\circ}\right)$ or

Table 4. Least-squares planes about the siloxane moiety in molecules (I) and (II)

Atom displacements ( $\AA$ )

|  | (I) | (II) |  | (I) | (II) |
| :--- | ---: | :--- | :--- | ---: | ---: |
|  | $\mathrm{O}\left(3^{\prime}\right)$ | $-0.014(4)$ | $-0.014(4)$ | $\mathrm{C}\left(4^{\prime}\right)$ | $0.133(7)$ |
|  | $0.131(7)$ |  |  |  |  |
| ${ }^{*} \mathrm{Si}(1)$ | $0.018(2)$ | $0.022(2)$ | $\mathrm{C}\left(3^{\prime}\right)$ | $-0.750(6)$ | $-0.774(6)$ |
| ${ }^{*} \mathrm{O}(1)$ | $-0.005(4)$ | $-0.012(4)$ | $\mathrm{C}(10)$ | $1.579(8)$ | $1.551(7)$ |
| ${ }^{*} \mathrm{Si}(2)$ | $-0.012(3)$ | $-0.007(2)$ | $\mathrm{C}(13)$ | $-1.601(8)$ | $1.615(8)$ |
| ${ }^{*} \mathrm{O}\left(6^{\prime}\right)$ | $0.013(5)$ | $0.011(5)$ | $\mathrm{C}(16)$ | $1.648(7)$ | $1.628(7)$ |
| $\mathrm{C}\left(6^{\prime}\right)$ | $0.891(7)$ | $0.885(7)$ | $\mathrm{C}(19)$ | $-1.511(7)$ | $-1.518(7)$ |

Molecule (I):

$$
0.77311 X-0.63400 Y-0.01862 Z-18.51606=0
$$

Molecule (II):

$$
\begin{gathered}
-0.07444 X+0.63521 Y+0.76875 Z-0.10177=0 \\
\text { * Atoms used to calculate the best planes. }
\end{gathered}
$$

phenyl groups ( $110 \cdot 7-114.7^{\circ}$ ) as neighboring groups. This may reflect the inevitable repulsion between the two isopropyl groups.

As shown in Table 4, $\mathrm{O}\left(3^{\prime}\right)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{Si}(2)-$ $O\left(6^{\prime}\right)$ forms a plane with a maximum deviation of $0.02 \AA$ for molecules (I) and (II), which makes a dihedral angle with the cyclopentene ring of 141.0 (4) or $140.4(4)^{\circ}$ for molecules (I) and (II) respectively. Such a planar conformation of the siloxane ring is thought to be unstable because of the strains in the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{Si}-\mathrm{O}-\mathrm{C}$ bonds, and the siloxane ring may be rather easily removed by reagent, for example 1 $M$ tetra- $n$-butylammonium fluoride, 0.2 M HCl , or 0.2 $M \mathrm{NaOH}$ (Markiewicz, 1979).

## Crystal structure

The crystal structure viewed down the $c$ axis is shown in Fig. 5, and the hydrogen bonds are also listed in Table 5. One of the two independent molecules in the

Table 5. Hydrogen-bond distances ( $\AA$ ) and angles ( ${ }^{\circ}$ ) in the crystal of siloxane neplanocin $A$

| D-H | $A$ | Translation for $A$ | $D \cdots A$ | D-H | H... $A$ | $\angle D-H \cdots A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N(6)I-H(N6)2 ${ }^{\text {* }}$ | N(3)1I | 1. -1.2 | 2.988 (7) | I-21 (6) | $2 \cdot 13$ (6) | 124 (4) |
| $\mathrm{O}\left(2^{\prime}\right) \mathrm{I}-\mathrm{H}\left(\mathrm{O} 2^{\prime}\right)$ | N(1)II | 2, -1, 1 | 2.942 (6) | 0.98 (6) | 2.02 (7) | 157 (5) |
| N(6)II-H(N6)2II | N(3)I | 2. 0, I | 3.005 (7) | 0.87 (7) | $2 \cdot 19$ (7) | I55 (6) |
| $\mathrm{O}\left(2^{\prime}\right)$ II $-\mathrm{H}\left(\mathrm{O} 2^{\prime}\right)$ II | $N(1) I$ | 1, 0.2 | 2.966 (6) | 1.09 (7) | 1.92 (7) | 162 (5) |
| Symmetry code for | e accep | $r$ atoms | $-x, y+\frac{1}{2}$ |  |  |  |



Fig. 5. The structure viewed down the $c$ axis. Hydrogen bonds are indicated by dotted lines.
asymmetric unit is connected by hydrogen bonds to another two molecules related by the $c$ translation: $\mathrm{N}(1)(\mathrm{I}) \cdots \mathrm{H}-\mathrm{O}\left(2^{\prime}\right)(\mathrm{II}), \quad \mathrm{N}(6)(\mathrm{I})-\mathrm{H} \cdots \mathrm{N}(3)$ (II), $\mathrm{O}\left(2^{\prime}\right)(\mathrm{I})-\mathrm{H} \cdots \mathrm{N}(1)(\mathrm{II})$ and $\mathrm{N}(3)(\mathrm{I}) \cdots \mathrm{N}(6)(\mathrm{II})$. These four hydrogen bonds form a sheet structure parallel to the $a c$ plane.

## References

Boki, N. G., Zakharova, G. N. \& Struchkov, Yu. T. (1972). Zh. Strukt. Khim. 13, 291-297.

Fukukawa, K., Ueda, T. \& Hirano, T. (1981). Chem. Pharm. Bull. 29, 597-600.
Hayashi, M., Yaginuma, S., Muto, N. \& Tsuino, M. (1980). Nucleic Acids Res. Symp. Ser. No. 8, s65.

Hossain, M. A., Hursthouse, M. B. \& Malik, K. M. A. (1979). Acta Cryst. B35, 522-524.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Lai, T. F. \& Marsh, R. E. (1972). Acta Cryst. B28, 1982-1989.
Main, P., Hull, S. e., lessinger, l., Germain, G., Declerce, J. P. \& Woolfson, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from $X$-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Markiewicz, W. T. (1979). J. Chem. Res. ( $S$ ), pp. 24-25; ( $M$ ), pp. 0181-0197.
Nakatsu, K. (1980). Private communication.
Peyronel, G. (1954). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 16, 231-236.
Steinfink, H., Post, B. \& Fankuchen, I. (1955). Acta Cryst. 8, 420-424.
UNICS (1979). The Universal Crystallographic Computing System. The Computation Center, Osaka Univ.


[^0]:    * Lists of structure factors, final positional parameters for H atoms and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36455 ( 12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

